Planning Multimodal Exploratory Actions for Online Robot Attribute Learning

Xiaohan Zhang¹, Jivko Sinapov², Shiqi Zhang¹
¹State University of New York at Binghamton, Binghamton, NY, USA ²Tufts University, Medford, MA, USA
Published at the Robotics: Science and Systems (RSS) Conference in 2021

Problem Definitions

- Offline Robot Attribute Learning (Off-RAL)
 - produces a binary classifier \(\Psi \) for action-attribute pair
 - estimates if an attribute applies to an object given streaming sensory data
 - Off-RAL requires large amounts of exploration data at training time.

- Robot Attribute Identification (RAI)
 - produces an action policy \(\pi \) given \(\Psi \)
 - aims to sequentially select actions to identify the attribute(s) in each identification task while minimizing the action cost

- Online Robot Attribute Learning (On-RAL)
 - produces an action policy \(\pi \) while learning \(\Psi \)
 - aims to minimize the discounted cumulative action cost and maximize the success rate of attribute identification

Rational On-RAL agents learn from data collected in early tasks, trading off early-phase performance for long-term performance.

Methods

Information-Theoretic Reward Shaping (ITRS) Overview:

- Transition Diagram:
 - State Space \(X \times Y \):
 - \(X \) is specified by fully observable domain variables (current states of the robot-object system, e.g., whether grasp and drop are successful or not)
 - \(Y \) is specified by partially domain variables (\(N \) queried attributes)

- Observation Functions: \(O(s, a, z) = \text{Pr}(p^v|p^a, a) = \prod_{i=0}^{N-1} \Theta_{p^v_i}(p^a_i, p^v_i) \)

- Reward Shaping:
 - \(R(s, a, s', s) = R^{\text{real}}(s, a, s') + \alpha \cdot \text{Ent}(s, a) - \beta \cdot I(E(p, a)) \)

 - Real-world reward function \(R^{\text{real}} \):
 - rewards (or penalizes) successful (or unsuccessful) identifications
 - reflects exploratory action cost (e.g., 0.5 for look and 22.0 for press)

 - Perceptual quality:
 - \(\text{Ent}(s, a) = \sum_{z \in \mathcal{Z}} O(z|s, a) \log_2 O(z|s, a) \)

 - Interaction experience:
 - \(I(E(p, a), \delta) = \frac{1}{\delta} |F^n|, \) where \(c \in \mathcal{C}, p \in A(F^n) \)

Results

- Datasets:
 - CY101 (Tatiya and Sinapov, 2019)
 - ISPY32 (Thomason et al., 2016)

- Baselines:
 - Random Legal (Thomason et al., 2018)
 - Repeated Assembly (Amiri et al., 2018)

- Experimental results show that ITRS enables the robot to complete attribute identification tasks at a higher accuracy using the same amount of training time compared to baselines.

Conclusions

- We focus on a novel On-RAL problem where the robot is required to complete attribute identification tasks and learn its observation model for each attribute at the same time
- We propose an algorithm called ITRS that achieves the trade-off between exploration (actively collecting data for attribute learning) and exploitation (using the learned attributes for identification tasks)

Acknowledgements

A portion of this research has taken place at the Autonomous Intelligent Robotics (AIR) Group, SUNY Binghamton. AIR research is supported in part by grants from the National Science Foundation (NRI-1925044), Ford Motor Company (URP Awards 2019-2021), OPPO (Faculty Research Award 2020), and SUNY Research Foundation.